
hf. J. Hear Mass Transfer. Vol. 31, No. 1 I, pp. 2261-2272, 1988 
Printed ia Great Britain 

0017-9310/88 s3.00+0.00 
0 1988 Perglmlon Pm8 plc 

Spectral correlated and non-correlated radiative 
transfer in a finite axisymmetric system 

containing an absorbing and emitting real gas- 
particle mixture 

L. ZHANG, A. SOUFIANI and J. TAINE 

Laboratoire d’Energ&ique Mokulaire et Macroscopique, Combustion, 
Ecole Centrale des Arts et Manufactures, 92295 Chltenay-Malabry Cedex, France 

(Received 10 December 1987 and infinalform 22 February 1988) 

Altetrad-Radiative transfer in a finite axisymmetric enclosure is investigated for a non-isothermal, 
inhomogeneous, absorbing, emitting but non-scattering gas-particle mixture. A random statistical narrow 
band model and the Curtis-Godson approximation are used to calculate the real gas radiative properties. 
High resolution spectral correlations between the transmissivities of homogeneous and isothermal dis- 
cretization column elements are treated by an ellipse correlation model which is validated. A discrete- 
direction method is applied to solve the geometrical part of the radiative transfer problem. Applications 
to planar and finite axisymmetric geometries show that spectral correlations significantly modify, typically 
30-50%, the radiative flux and radiative dissipation in practical systems. Non-correlated models may lead 

to inaccurate qualitative predictions (e.g. the radiative flux sign may be reversed). 

1. INTRODUCTION 

RADIATIVE transfer must be accurately modelled in 
practical systems such as combustion chambers, 
boilers and furnaces, gas turbine combustors, rocket 
and aircraft engines, etc. Many of these systems can be 
considered as finite-length axisymmetric enclosures. 
Most of the previous studies are related to one-dimen- 
sional infinite cylindrical geometries (see ref. [l] for a 
literature survey). The works related to finite axisym- 
metric enclosures [2, 31 or tri-dimensional geometries 
[4] use generally gray gas models, which are not sat- 
isfactory except when the diffusion by large size par- 
ticles is predominant. Other works use the exponential 
wide band model due to Edwards and co-workers [S- 
81 for cylindrical systems [8,9]. The exponential wide 
band model accounts for discrete absorption bands 
and spectral correlations resulting from the high res- 
olution structure. However, the spectral discretization 
used in this model is too wide and does not take 
into account the low resolution correlations between 
intensities and transmissivities [IO]; on the other 
hand, the case of partially reflecting walls cannot be 
correctly modelled with this approach [6]. These two 
disadvantages are avoided when a statistical narrow 
band model is used in radiative transfer calculations 
[l&12]. In other works [13, 141, the spectral difficulty 
has been treated by using a simplified approach in the 
case of an elementary column ; total transmittance 
data were calculated from a statistical narrow band 
model and characteristic temperature and pressure 
conditions of the column [13, 141. 

We apply in the present study a random statistical 
narrow band (RSNB) model [15] and the Curtis- 
Godson (CG) approximation [16] to calculate gas 
radiative properties. These properties are used to solve 
numerically the radiative transfer problem in a finite 
axisymmetric enclosure containing an inhomo- 
geneous non-isothermal and non-scattering H@- 
CO&O-air-particle mixture. The geometrical part 
of the radiative transfer problem is treated with a 
discrete-direction method. An exact correlated cal- 
culation of intensities at all the medium points and 
for all the directions is CPU time and storage con- 
suming; it is easier to compute, step by step, the 
intensity field while not accounting for spectral cor- 
relations between column elements of the spatial dis- 
cretization. The purposes of this paper are : (i) to in- 
vestigate the influence of these correlations ; (ii) to 
elaborate and validate an approximated ellipse cor- 
relation (EC) model based on an exact correlated 
calculation for some discrete directions. The cor- 
related radiative intensity is obtained from the prod- 
uct of the corresponding non-correlated intensity and 
a corrective factor given by the EC model. 

The basic formulation of the problem, the model- 
ling of the mixture radiative properties, and the choice 
of spectral, spatial and directional discretizations 
are exposed in Sections 2.1, 2.2 and 2.3, respectively. 
The ellipse correlation model is developed in Section 
2.3.3. Results from this model are compared with 
those from an exact calculation for a planar medium 
in Section 3.1, and to those from a non-correlated 
model for a finite cylindrical system in Section 3.2. 

2261 



2262 

NOMENCLATURE 

a coefficient related to wall leaving 
intensity contributions 

C correlation coefficient 
E distance between the walls in planar 

geometry 

; 

unit vector along a coordinate axis 
geometrical coefficient 

.I-,, particle volume fraction 
G medium emission contribution 

4 1, radiative intensity 

43 blackbody intensity 
J, K, M medium grid points 

P 
P(M) 
Pk 

4t 

4w 

R 
r 

rdy) 
s 
T 
u 
u 

X, 

local radius of an axisymmetric enclosure 

cylinder length _ 
element column length 
radial discretization total number 
axial discretization total number 
0 discretization total number 

solid angle discretization total number 
unitary normal vector pointed outside 
the wall 
pressure 
radiative dissipation 
cut plane parallel to the system axis 
incident radiative flux 
wall radiative flux 
largest radius of an axisymmetric system 
radial coordinate 

I 

_ 

axial coordinate 
z 

properties averaged over the spectral 

transverse coordinate in the plane Pk. 

Greek symbols 

B mean line-width to spacing ratio 

7 mean half-width of the absorption lines 
inside Av 

6 equivalent line spacing 
& emissivity 
0 angle in a plane Pk 
V wave number 
Av spectral range 

; 
transmissivity 

angle characterizing the plane Pk 
sz solid angle. 

Subscripts 

z 
wall incident quantity 
radial discretization 

I wall leaving quantity 
rn B discretization in the plane Pk 
s related to a wall point S 

r component in the y-direction 
2 component in the z-direction 
1’ spectral quantity. 

Superscripts 

wall grid point range Av 
temperature * non-correlated quantities. 
optical path length 
unitary vector of an elementary solid Index 
angle i discretization over the y-direction 
molar fraction of species i i discretization over the z-direction. 

2. ANALYSIS 

2.1. Basic jbrmulation 
The spectrum is divided into a number of Av wide 

finite intervals inside which the blackbody intensity 
is constant. We consider, in a first step, quantities 
averaged over a spectral range Av ; e.g. the radiative 
intensity i;(M, u) at a point M in the direction char- 
acterized by the unit vector u is 

I”(M,U) = L s Av bv 
I, (M, u) dv’ (1) 

where Z,(M,u) is the spectral radiative intensity at For given distributions of temperature T, pressure 
the same point in the same direction. The radiative P, molar fraction xi of all the gas species and particle 
intensity leaving an isothermal and homogeneous col- characteristic parameters, the radiative flux SW(S) at 

umn element of length I, at temperature T, containing any point S of a diffuse wall and the radiative dis- 

an absorbing, emitting but non-scattering gas-particle sipation P(M) at any point M of the medium can be 

mixture is given by calculated from 

7,&u) = z,1,(0,u)+(1 -TJI,,(T) (2) 

where IJO, u) and Z,,,,(T) are respectively the spectral 
intensity at the entrance of the column and the spectral 
blackbody intensity at temperature T; z, is the spectral 
transmissivity of the column. Averaged quantities 7: - 
and r,l,,(O,u) are obtained from integrations similar 
to equation (1). The averaged product ~,1,(0, u) is 
not equal to the product z,Z,(O,u) because z, and 
IJO, u) are spectrally correlated. This correlation 
phenomenon is due to the high resolution structure 
of the spectrum ; e.g. a few hundred resolved lines may 
appear in a 25 cm-’ wide range of an absorption band 
of CO, or H,O. 
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wf) = c i;(M,u)udc1 Av (3) 
st==um 11 

qw(s) = 1 E,(S){qi”(S)--zbv[T(S)I}Av c4) 
spectrum 

where s,(S) and qiy(S) designate respectively the wall 
emissivity and incident radiative flux per unit area at 
wall point S; the latter is given by 

qiy(S) = 
s 

E(S,u)u*ndQ (u-n 2 0). (5) 

In this equation, Z&S,u) is the incident intensity at 
point S from the direction u and n the unitary normal 
vector pointed outside the wall. In the case of diffuse 
walls, the leaving intensity ZiV(S, u) at the wall point S 
is not dependent on the direction u and is written as 

1 --E,(S) 
MS> = awLw[w)I + ~ 

a 
qivW (6) 

Equation (2) enables a step-by-step calculation of the 
intensity at any point from the wall leaving intensities 
ZJS). Therefore, the incident radiative flux q&S) is a 
function of the leaving intensities at the wall points. 
A linear equation system, in which the unknown 
quantities are q,,(S) (or Ii,), is thus obtained. The 
range of this system is equal to the number of wall 
discretization points. When this system is solved, the 
radiative flux qw(S) and the radiative dissipation 
Z’(M) are obtained from equations (2)-(4). 

2.2. Radiative properties of the mixture 
The main difficulty in real gas radiative transfer 

treatment is to calculate the spectral correlated terms 
which appear in equation (2). A gray gas model, using 
a wave number-independent absorption coefficient, 
has no physical meaning. The wide-band model, due 
to Edwards and co-workers [5, 61, and derivative 
models such as that of Tien and Lowder [7], take into 
account spectral correlations but present two dis- 
advantages: (i) reflexion by the wall cannot be cor- 
rectly taken into account; (ii) the spectral dis- 
cretization is too wide and leads to errors in the 
radiative flux distribution for an intermediate optical 
length medium. Investigations about different radi- 
ative band models have been carried out in previous 
publications associated with one-dimensional radi- 
ative transfer coupled with conduction [ll] or with 
convection [ 10, 121. The most accurate temperature 
and flux distributions are obtained with the RSNB 
model, due to Mayer and Goody [15], and an 
exponential-tailed-inverse line-strength distribution 
[17]. The transmissivity of an elementary homo- 
geneous and isothermal column of length 1 due to gas 
species i, averaged over the spectral range Av, is then 
given by 

i:=exp[-~(J(1+~~-1)] (7) 

where x, and P are respectively the molar fraction 
of the absorbing species i and total pressure ; E and 
B = 2nT//s are the band model parameters which take 
into account the spectral structure of the gas. Par- 
ameters aand l/smay be generated either from exper- 
imental spectra (e.g. ref. (181 for H,O) or from a line 
by line calculation [l 1, 19-213 at different tempera- 
tures. In the present study we use the previously pub- 
lished parameters f and l/6 [I 1, 211, associated with 
the mean half-width 7 given by 

Y”P = 0.066; 
s 

7.0x”10; + [1.2(X”@ +&J,) 

(8) 

and 

P T, o.7 
Yco, =p, 7 

0 

x [0.07x,,+0.058(x,~+~oJ+0.15~u~o] (9) 

where P, and T, designate standard pressure and tem- 
perature (1 atm, 296 K). 

For a non-isothermal and inhomogeneous column, 
the CG approximation [16, 221 leads to accurate 
results if pressure gradients are not too large [23]. The 
basic idea of this approach consists in the trans- 
formation of such a column into an equivalent iso- 
thermal and homogeneous one. Effective band model 
parameters E= and PC are introduced by averaging I? 
and p over the optical path U of the column 

U(Z) = (10) 

& = & 
s 

‘P(M)n,(M)&M) dl (11) 
0 

fled- l 

s oJ(l) 0 
P(Wxi(M)Ei(WB(M) dl. (17-j 

The transmissivity of this equivalent column is then 
calculated from equation (7). 

When absorption by different gas species occurs 
inside the same spectral range Av, these phenomena 
can be considered as not correlated [ 151; the trans- 
missivity ?f of the mixture column is then the product 
of those related to each species. 

We consider only particles of characteristic size 
smaller than the radiation dominant wavelength ; the 
particle spectral absorption coefficient is then given 

by 1241 

c = 36nfov tn2 +,,2y2] +QnX)2 (13) 

where f, is the particle volume fraction, n and x are 
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the real and imaginary parts of the refractive index, 
respectively. As c has no fine structure inside Av, 
absorption by particles is not correlated with that by 
the gas ; the transmissivity ‘t, averaged over Av, of a 
column element is the product of the transmissivities 
?f of the gas and ?t of the particles. 

2.3. Radiative transfer model 
Temperature, concentration and pressure fields, 

and particle characteristics are supposed to be known. 
The wall emissivity is assumed to be diffuse but not 
necessarily gray. The wall temperature distribution is 
also given. 

In order to compute the radiative flux and dis- 
sipation inside Av, two discretizations are necessary : 
(i) a spatial discretization, i.e. the choice of the grid 
points where the radiative intensities are calculated ; 
(ii) a directional discretization, i.e. the definition of 
elementary solid angles An around discrete directions 
u. The spatial discretization is not consistent with the 
directional one ; the axis of an elementary solid angle, 
which passes through a grid point, generally does not 
pass through another grid point. It is impracticable 
to carry out an exact calculation of correlated inten- 
sities at all the grid points and for all the discretized 
directions; although this calculation is possible for a 
one-dimensional planar geometry [ 10, 111. 

The method proposed here consists in : (i) defining 
optimal spatial and directional discretizations (Sec- 
tion 2.3.1) ; (ii) carrying out a non-correlated cal- 
culation of the intensities at each grid point in all the 
discretized directions (Section 2.3.2) ; (iii) taking into 
account the spectral correlations at all the grid points 
and in all the directions by use of an ellipse correlation 
model (Section 2.3.3); this model is based on exact 
correlated calculations in particular directions. The 
accuracy of this corrective model will be discussed in 
the same section. 

2.3.1. Spatial and directional discretizations. An 
axisymmetric finite enclosure of length L is defined by 

r=rW(y) (O<y<Q) (14) 

where r and y are respectively the radial and axial 
coordinates, and r, designates the radius of a lateral 
wall. 

The medium grid curves are the circles (y,, rk) which 
are the intersections of N, coaxial cylinders called 
rk, and a series of planes called y, (i = 1,2,. , N,,). 
normal to the system axis. The radii of the coaxial 
cylinders are rk (k = 0, 1,2,. . , N,) with r0 = 0 and 
r,, = R, radius of the largest cylinder. The wall grid 
curves are the intersections between the walls and the 
NY planes yi or the N, coaxial cylinders rk. 

The directional discretization consists in dividing, 
at each point M of the medium, the space into Nn 
elementary solid angles quoted AC& (I = 1,2, . ,Vc2) 
and characterized by a unit vector u. If Nn is large 
enough, the radiative flux vector is written as 

s IV” 

%W = I,(M, u)u dCJ = 1 
s 

Z,(M, u)u do 
‘$77 i=, ~50, 

e ;?;(M,u)lC1udR. (15) 
I= I I 

From any wall point S, of the grid circle (y,, R), we 
define N, planes tangent to the coaxial cylinders r, 
(k = 0, 1,2,. . . , N,- 1) quoted P,(R) (Fig. 1). The 
angle @JR) between planes P,(R) and P,(R) is given 

by 

@‘k(R)=sin-‘(r,/R) (k=O,l,...,N,-1). (16) 

N, wedges, having the same edge Soy (Fig. 1) and 
divided into two equal parts by the plane P,(R), are 
introduced. The angles A@JR) of these wedges are 
given by the recurrence relations 

A%(R) = @r(R) 

A@,(R) = 2]@,(R)-@,- I,(R)I-A@,,- lj(R), 

k = 1,2 ,.... N,-2 

A%(R) = n/2-[~,(,-,,(R)+O.5A~(1;~ ,,(R)l, 

k = /VP-l. (17) 

t 

FIG. 1. Directional discretization of an axisymmetric system and mesh network on the plane P,(R). 
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FIG. 

P,(R) 

so so 
2. Discretization of angle Q for the grid points on the cylinder r,. < R. (Radiation fields in the planes 

D,(rP) and P,(R) are identical.) 

A y-z coordinate system is used in each plane P,(R) 

(Fig. 1). Let A+(R) be the propagation direction in 
the plane P,(R) characterized by the angle 0, with 
the z-axis, (3, being arbitrarily chosen in the range 
[-x/2,42] (m = -NB ,..., -l,l,..., No). 2Ne 
angles A@, which are divided into two equal parts 
by Ak,JR) are defined by 

A%, =2e, 

A&,, = 2[8,-(em_, +O.SA&_,)], 

m=2,3,...,Ng-1 

Ae, = q2-(em_, +0.5Ae,_,), m = No. (18) 

AtI, (m= -1,-2,..., -No) is written in a similar 
manner. 

A discrete solid angle AC&,,(R) [A@k(R),A&] is 
then associated to each discrete direction Ak,,JR). N, 
and NB are large enough to assume that the mean 
intensity in the discrete solid angle is correctly rep- 
resented by the intensity in the direction Ak,m(R). The 
propagation direction A,,(R) is characterized by a 
unit vector in the plane Pk 

u(e) = eY sin e+e, cos 8. (19) 

The definition of the discrete direction Ak,,(R) 

related to point So of the external cylinder can be 
generalized to a current point M of an internal grid 
circle (y,,rP), these directions are called Ak,JrW) 
(k=O,l,..., k’). The plane containing M and the 
tangent to the cylinder r, is quoted IIk(rk’) 
(k=O,l,..., k’). The angle between the planes 
II&~) and II, is called mk(rk.) and is given by 
(Fig. 2) 

Ok(rk’) = sin-’ (rk/rk’) (k = 0, 1, . . . , k’). (20) 

The angles A&(rV) are defined, by analogy with 
AC&(R), by the recurrence relations 

A%(rk’) = @r(+) 

AWrr) = 2t~k(rk.)-~‘(Ii-,I)(rk.)1-A~DB-,I)(r~)r 
k=1,2 ,..., k’. (21) 

The discrete propagation directions A+,(rV) at point 

M(y,, rk.) are then characterized by the angles (Dk(rti) 
and 0, previously defined. 

It is worth noting that in this model, the number 
(k’+ 1) of @ discrete values increases with rP ; this fact 
is consistent with the decrease of the radiative flux 
q”(r) when r decreases. On the other hand, the intensity 
field in the (k’+ 1) planes II,@,) (k = 0, 1, . . . , k’) is 
strictly identical to that in the plane P,(R) defined 
from the wall point So. Calculations of the radiative 
intensities are then only carried out in the N, planes 
P,(R) (k = 0, 1, . . . , N, - 1). Only the intensities cal- 
culated in the planes P,(R) (k = 0, 1, . . . , k’) must be 
considered for calculations at the point M(y,, rK). The 
intensities are calculated at all the grid points of a 
plane P,(R) for 0 discrete values in the range 
[-x/2, a/2] ; the intensity at point M in a direction u 
characterized by a value of 0 outside this range is 
equal to that calculated at the symmetrical point M, in 
the symmetrical direction u, characterized by (n- 0) 
(Fig. 1). Equation (3) is written as 

(22) 

where 6 is the Kronecker symbol. Equation (5) is 
similarly written 

k-0 m=--No 

X 

s s 

cos 0 cos’ 0 d0 d@. (23) 
A%(R) 4, 
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2.3.2. Radiative intensity Jield. In the following, 
subscript v is left off for the sake of clarity. In a non- 
correlated approach, the spectral correlation between 
transmissivity and radiative intensity is omitted ; 
equation (2) can be written as 

Z*(z,u) = rt~*(o,U)+(l-~)Zb(T) (24) 

where superscript * designates non-correlated quan- 
tities. The non-correlated intensities at all the grid 
points of plane Pk in the direction u(8) can be cal- 
culated step by step from this equation. 

The intensity f*(M, u) at a grid point M (Fig. 1) is 
composed of the transmitted part of the intensity 
f*(M’, u) at the non-grid point M’ and of the emitted 
intensity by the column element between M’ and M. 
The intensity ?*(M’,u) at the non-grid point M’ is 
obtained from an interpolation between the intensities 
at the neighbouring grid points K and J (Fig. 1) ; 
finally we obtain 

f*(M,u) = ‘t(MM’)[fF(K,u)+(l -f)1*(.Z,u)] 

+ [1 -Z(MM’)]Z&4M’). (25) 

In this equation, the transmissivity ?(MM’) and the 
blackbody intensity Z,(MM’) are calculated with the 
averaged temperature, pressure and concentration of 
the column MM’ ; the coefficient f is given by 

,f = AZ tan (Q)/Ay (26) 

where Ay and AZ are the axial and transverse local 
steps in the plane Pk (Fig. 1). Equations (25) and (26) 
are only suitable for 0 < 8 < tan-’ (Ay/Az). Similar 
equations can be written for other 0 ranges and for 
the wall grid points. 

The non-correlated intensities at the grid points 
of line j are expressed vs the unknown wall leaving 
intensities from those of the line j- 1; point (i,j) on 
line j is treated after point (i- 1,j) for 0 > 0 and 
before it for (3 < 0. For black walls, the wall leaving 
intensities are equal to the blackbody ones; the 
scheme is then explicit. Otherwise, the following 
procedure is used. The non-correlated intensity at 
any grid point M(i,j) can be written as a function 
of the wall leaving intensities (Section 2.1) 

i;“(M,u) = ; 6,:(M,u)&Ju)+G*(M,u) (27) 
s= I 

where NW is the number of discretized wall points; 
ii,*(M,u) a coefficient related to the contribution of 
the intensity z leaving a wall point S and C?*(M, u) 
the contribution of the medium emission. These 
coefficients are calculated step by step from formulas 
similar to equation (25). The initial boundary values 
of these coefficients are given by 

$(S’, u) = 
1, if S and S’ designate the same point 

0, if S and S’ are two different points 

(2Sa) 

G*(s,u) = 0. (28b) 

This procedure is followed until the opposite walls 
are reached. The incident intensities on these walls are 
thus expressed in terms of the wall leaving intensities. 
Combining equations (5) and (6) we get a linear 
equation system. The resolution of this system gives 
the wall leaving intensities and then the non-correlated 
intensities at all the medium grid points. 

2.3.3. Spectral correlation model. Radiative fluxes 
calculated from an RSNB model with the spectral 
resolution values Av = 25 and 200 cm -’ differ by 
about 15% [12]. The spectral resolution Av = 25 cm ’ 
is chosen in the present study. 

The exact correlated intensity at any grid point 
M(i,j) of plane Pk is obtained without interpolation 
in the directions Oy and Oz ; e.g. the correlated intensity 
T(i,j,e,) at grid point M(i,j) in the direction Oz is 
given by 

I- I 

f(i,j,e,) = Z(i,j,j)l;(i,j,) + 1 [?(i,.j’+ lj) 
/‘=I 

-?(i,j?)l&(i,j’)+[l-t(i..j)]Z,(i,j) (29) 

where (i,js) denotes a wall grid point S; i(i, j’j) is the 
correlated transmissivity of adjacent elements from 
M’(i,j’) to M(i,j); it is calculated from equations 
(7) and (lo)-(12) ; z(i, j,) is the intensity leaving the 
point S(i, j,). It appears that the exact correlated 
intensity r(i,j,eJ at grid point M(i, j) cannot be 
obtained from the correlated intensity r(i, j - 1, ez) at 

the adjacent grid point J(i,j- 1) ; al1 the intermediate 
transmissivities Z(i,j’j) must be calculated and stored 
to make such a correlated calculation, It is time con- 
suming to do it for all discrete directions and grid 
points. On the contrary, the calculation of non-cor- 
related intensities, established in the previous section 
is relatively easy. 

We define a corrective factor C(M,u) for the grid 
point M and for the direction u(O), called the cor- 
relation coefficient 

which will be modelled in this section. A planar 
geometry is first considered in order to validate this 
model with an exact calculation. In the case of a 
medium between two parallel infinite walls (Fig. 3), 
the non-correlated and correlated calculations have 
been carried out for all the directions, different wave 
number ranges, different temperature fields and 
different optical thicknesses. It appears that C(M, u) 
is well approximated in the range [0”,70”] by the 
ellipse correlation coefficient C,(M, u) (Figs. 4 and 5) 

C,(M,u) = [(C, cos0)‘+(C,sinH)2]‘,2 (31) 

where C, and C2 are two parameters calculated from 
the exact correlation coefficients in the directions char- 
acterized by 0 = 0” and 70”. The difference between 
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Z 
A 

E/2 ‘X., e / / / , ,.. , , , , , , 

------ 

------ 

IO C,(M, II) = [(C(M, e,) cos 0)’ 8 
P Ad9 -- -- 

------ I 

- 
FIG. 3. Planar medium between two parallel walls. 

the exact and ellipse correlation coefficients is smaller 
than 1% in the range [O’, 70”]. When 19 tends to 90”, 
the column length increases, the medium becomes 
thick and isothermal in this direction. The correlation 
phenomena tend to disappear and C(M, u) tends to 1. 

For a two-dimensional axisymmetric system, an 
ellipse correlation coefficient C&U, u) is calculated 
from the exact correlation coefficients in the directions 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 4. Variations of the correlation coefficient C with 0 in 
the case of pure water vapour between two parallel walls (the 
wall conditions and the medium temperature distribution are 

specified in Fig. 6(b). 

1.01 I 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 5. Variations of the correlation coefficient C with 0 in 
the case of a H,GN* mixture between two parallel walls 
(E= 60 cm, T, = 800 K, E = 0.8, xHz,, = 0.15, x, = 0.85, 
temperature field is given by T(y) = 8OOf 1200(1-11z[/E)). 

0~ and Oz for each plane Pk. It is given at any grid 
point M of the plane Pk for any direction 0 > 0” by 

C,(M, II) = [(C(M, e,) cos f-l>‘+ (C(M, e,) sin 0)*] I” 

(32a) 

and for 0 < 0” by 

+ (C(M, -e,,) sine)‘] “* (32b) 

where C(M, ei) is the exact correlation coefficient for 
the direction ei. The validity of this model is discussed 
in Section 3. 

3. RESULTS 

3.1. Planar geometry 
Calculations have been carried out in the case of 

water vapor between two isothermal parallel walls 
(Fig. 3) in order to validate the radiative transfer 
model. Results are compared to those of an exact 
correlated calculation using the RSNB model and the 
CG approximation for the same system [lo]. Various 
optical thicknesses of the medium characterized by 
the distance E between the walls have been considered. 
Wall emissivity is assumed to be constant. 

Four different models are used to calculate the radi- 
ative dissipation distribution P: (i) the exact cor- 
related model of ref. [lo] ; (ii) the present correlated 
model for all the discrete directions ; (iii) the ellipse 
correlated model; (iv) the non-correlated model. 
Results from these models are’ shown in Figs. 6(a)- 
(d). The radiative dissipation P obtained with model 
(ii) is in good agreement with that of model (i). In the 
case of wall emissivity greater than 0.5, differences 
between these two models are lower than 5% in the 
centre region, and smaller in the near wall region. In 
the case of reflecting walls (E = O.Ol), these differences 
are smaller than 10%. 

No significant difference appears between the radi- 
ative dissipation P issued from model (ii) and the 
ellipse correlated model. The lack of validity of the 
ellipse correlated model in the 8 range [70”, 90”] has no 
sensitive influence on the radiative dissipation. Two 
reasons explain this fact: (a) the difference between 
the ellipse and the exact correlation coefficients has 
not always the same sign in this range (Figs. 4 and 5) ; 
(b) the contribution of an elementary solid angle to 
the radiative dissipation decreases when fJ increases 
up to 90” ; the contribution of the range [70”, 90’1 is 
generally lower than 4%. 

The non-correlated model overpredicts the radi- 
ative dissipation P by about 2O-30%. In the region 
near the wall the medium absorbs more radiative 
energy than it emits (P > 0), while in the centre region, 
emission is predominant (P < 0). The non-correlated 
model overestimates both absorption in the region 
near the wall and the medium emission in the centre 
region. 

Wall radiative fluxes qw calculated with the model 
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FIG. 6. Radiative dissipation in pure Hz0 between two parallel walls for different optical thicknesses 
(characterized by E) and different values of wall emissivity. Temperature field is specified for each case. 
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FIG. 7. Wall and geometrical conditions used in the cylinder calculations. 

of ref. [IO], with the ellipse correlated model and with 
the non-correlated model, are shown in Table 1. 
Differences between the two fust models are smaller 
than the differences related to the radiative dissipation 
P. In fact, qw is the integral of P over the range 
-E/2 < y < E/2 ; the non-correlated model over- 
estimates the absolute value of P near the wall (P > 0) 
as in the centre region (P < 0). The non-correlated 
model also overestimates the radiative flux qw by 
about 30%. 

3.2. Axisymmetric system 
The ellipse correlated and non-correlated models 

are used to predict the radiative transfer in an axisym- 
metric cylinder which is closed at the section y = 0 
and open to the atmosphere at the section y = L. Wall 
conditions are reported in Fig. 7 (typical conditions 
of the combustion chamber of an aircraft engine). For 
practical computations, the section y = L can be, in a 
first approximation, considered as a black wall. The 
medium is a H,CKCO,-CO-N,-particle mixture. The 
particle spectral absorption coefficient is simplified 
from equation (13) [24] 

fl = SSVf” (33) 

where v is the wave number in cm-’ and e is ex- 
pressed in cm-‘. In the following, the total pres- 
sure is taken equal to 1 atm and the temperature dis- 
tribution in the medium is assumed to be 

T(r,y) = 800+1200(1-r/R)(y/L). (34) 

Table 1. Wall radiative flux in the case of planar geometry 
(kW me2). Temperature distributions are specified in Fig. 6 

Conditions 
E=Scm E=5cm E=40cm 

& = 0.5 E = 0.99 & = 0.99 

Model of ref. [lo] 5.113 8.675 6.803 
Ellipse correlated model 5.189 8.824 6.533 
Non-correlated model 6.270 11.41 7.639 

The numerical results reported in this section are 
obtained with (N,, N,,, No) = (11,12,10). 

The radiative flux at the lateral wall calculated with 
the exact and the ellipse correlated models are com- 
pared in order to validate the latter in the case of a 
homogeneous H&N2 mixture. Results show that the 
ellipse and the exact correlated models are in good 
agreement (Fig. 8(a)). This agreement is also obtained 
in the case of larger optical thicknesses (Fig. 8(b)). 
Important overestimations of the radiative flux by the 
non-correlated model are observed in the two cases. 
The overestimation of the qw peak value reaches 
90% in the case xu,,, = 0.15 and 40% in the case 

- X”@ = 0.50. 

2 
1 

T 

S-1 1 -2 
-3 

-4 
I , , , , , , , 

0.0 
, ; 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

6 

r 
E4 
k 1 2 

*---., (b) 
. 

.’ \ \ 

FIG. 8. Lateral wall radiative flux for an axisymmetric 
cylinder containing homogeneous Hz&N2 mixtures. 
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Radiative fluxes at the walls y = 0, L and r = R are 
computed with the ellipse correlated and the non- 
correlated models in the case of an inhomogeneous 
and non-isothermal H20-CO&O-N, gas mixture 
(Fig. 9). The molar fraction distributions are given by 

xN2 = l-xH,O-xCO,-xCO~ (35) 

The non-correlated model predicts a positive value of 
qw for the wall ,v = 0, while the ellipse correlated one 
predicts a negative value (see equation (4) for the sign 
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FIG. 9. Wall radiative flux in the case of an inhomogeneous 
HZO-COZ-CO-N2 mixture (equation (35)). 
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FIG. 10. Correlated and non-correlated emissivities of the 
gas mixture column lying from y = 0 to L: _Y~~,~ = 0.15 ; 

XN, = 0.85 ; f,, = 0 

of qw). This qualitative disagreement is explained by 
the large discrepancies between the non-correlated 
and the correlated emissivities of the axis column lying 
from y = 0 to L (Fig. 10) ; the flux emitted by the gas, 
and then the absorbed fraction by the wall y = 0 are 
overestimated in the non-correlated approach; this 
results in the change of sign of qw. The absolute over- 
estimation of qw by the non-correlated model is prac- 
tically identical for all the walls. 

The radiative dissipation P in the medium defined 
by equations (34) and (35) is plotted vs r/R and y/L in 
Fig. 11. Values of P obtained from the non-correlated 
model are larger than those obtained from the ellipse 
correlated model. 

Radiative fluxes at the lateral wall are shown in 
Fig. 12 for gas-particle mixtures characterized by 
.~n,~ = 0.15,~~~ = 0.85and f,varyingfromOto 10e4. 
The absolute difference between radiative fluxes at the 
lateral wall calculated with the ellipse correlated and 
the non-correlated models is practically the same for 
different values of the particle volume fraction J;. The 
lateral wall flux qw increases when fv increases up to 
10m6, and then decreases with fv. This phenomenon 
is explained as follows: when f,> becomes large the 
medium becomes thick ; radiation emitted by the hot 

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 

r/R 

FIG. Il. Radiative dissipation in the same conditions as in 
Fig. 9. 
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FIG. 12. Radiative flux at the lateral wall for different particle 
volume fractions (-, ellipse correlated model ; ----, non- 

correlated model). 

mixture in the ccntre region is not transmitted to 
the wall ; the radiative flux qw is then mainly due to 
radiation from the medium near the wall. The spectral 
ranges related to significant emission by particles and 
gas are practically separated. As a result, spectral 
correlated and non-correlated fluxes differ sig- 
nificantly even for high f, values. 
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TRANSFERTS RADIATIFS SPECTRALEMENT CORRELES ET NON CORRELES DANS 
UN SYSTEME AXISYMETRIOUE DE DIMENSIONS FINIES CONTENANT UN MELANGE 

ABSORBANT ET EMETTEUR GAZ REEL-PARTICULES 

R&r&-On &die le transfert radiatif dans une enceinte axisymetrique finie contenant un melange de 
gaz et de particules anisotherme, heterogirne, absorbant, emetteur mais non diffusant. Un modele statistique 
aleatoire a bandes ttroites et l’approximation de Curtis-Godson sont utilises pour calculer les prop&t&s 
radiatives reelles du gaz. Les correlations spectrales a haute resolution entre les transmittivids des differents 
elements de colonne de la discritisation supposes homogenes et isothermes sont trait&es par un modtle 
utilisant une indicatrice elliptique qui est valide. Une mithode de directions disc&es est utilisee afin de 
resoudre la partie gitometrique du transfert radiatif. En appliquant ce modele a un milieu plan et a une 
geometric axisymetrique finie, il a apparait que les correlations spectrales modifient de fagon significative 
(typiquement 30 a 50%) le flux radiatif ainsi que la dissipation radiative au sein du milieu dans des systtmes 
concrets. Les meddles non correles peuvent aboutir a des predictions qualitatives erronees (par exemple, 

le signe du flux radiatif peut dtre inverse). 

DER SPEKTRALABHANGIGE UND UNABHANGIGE STRAHLUNGSAUSTAUSCH IN 
EINEM FINITEN ACHSENSYMMETRISCHEN SYSTEM, DAS EIN ABSORBIERENDES UND 

EMITTIERENDES GEMISCH REALER GASTEILCHEN ENTHALT 

Zusatnmenfassung-Der Strahlungsaustausch in einem finiten achsensymmetrischen Bereich wurde fur 
ein nicht-isothermes, inhomogenes, absorbierendes und emittierendes aber nichtstreuendes Gemisch aus 
Gasteilchen untersucht. Zur Berechnung des Strahlungsverhaltens eines realen Gases wird die Curtis- 
Godson-Naherung benutzt. Hochauflosende spektrale Beziehungen zwischen den Durchlassigkeiten von 
homogenen und isothermen diskretisierenden Elementen werden mit einem Modell behandelt, das sich auf 
Ellipsenbeziehungen stiitzt und validiert wurde. Eine Richtungsdiskretisierungs-Methode wird benutzt, 
urn den geometrischen Teil des Strahlungsaustauschproblems zu liisen. Ubertragungen auf ebene und finite 
achsensymmetrische Geometrien zeigen, da13 die spektralen Zusammenhlnge den StrahlungsfluB und 
die Strahhtngsverteilung signifikant veriindern-typisch im Bereich 3050%. Nichtkorrelierende Modelle 

kdnnen zu qualitativ ungenauen Vorhersagen fiihren (z.B. Vorzeichenumkehr beim StrahlungsfluQ 

CIIEKTPAJIbHOE KOPPEJIHPOBAHHOE &I HEKOPPESIHPOBAHHOE 
PACI-IPOCTPAHEHHE HBJWIEHHR B KOHESHOfi OCECMMMETPWIHO~ CHCTEME, 
CO~EPXAIQER I-IOFJIOIIjAIORD’IO I4 HWIY~AIOIIJYIO CMECb PEAJIbHOI-0 I-A3A H 

~ACTHH 

.4mmr~HccneAyerclccnerryeTcr pacnpoorpanenne ii3nyuerinz B KoHelnroMepHoP ocecmmeTpHwoii nonocTH, 

coAepxcau4eti HeH3oTepb4wnzcKym,Heo~opoAqw,norno~aroruyio u ~3Ay4amuyto,Ho ne pacceseam- 

ruyloc~ecbra3aH~a~A~.~pac~eTaH3nygaro~x~~0#ff~peanbHorora3aucnonb3y~crxao~rec- 

KaK CTaTIiCTH'ieCKaR y3KononocEian MOAeAb H npn6mxceeHHe Keprrica-IoAcoHa. CIleKTpaAbHbIe 

KOp~AKlmH BbICOKOrO pEi3~l.UeHHK Mew K03+@,HeHTaMH IIpOlIyCKaHHK OAOpOAHbiX H UJOTepMH- 

WCKHX 3JIeMWiTOB p3AeJIHTeJfbHOfi KOJIOHKB o6pa6aTbImoTcr II&Vi IIOMOIUH 3JLi'IWIlTHSWKOii KOpPeJtR- 

wo~nofi MoAem. &IS peluemn reob4eTpwwKoii 4acni 3a~awi pacnpoqmieHm si3nyrleHaK 

l'Q,HMeHKeTCR MeTOA ASiCKJYZTHbIX Hal'IpaBJIeHEfi. B CJI)“iae IIJIOCKHX H KOHe'tHOMepHbIX OCeCHMMeTpW+ 

HblX reOMeTpHi8 IIOKZSIHO, 4TO CIleKTpaJIbHbte KOp~JIKWiH 3HaWTeJIbHO H3MEHRIOT, B CpeAHeM Ha 

30-50%, B.ZJIHYHHy IIOTOKa Alny'leHHK II er0 paC.U%tHHe B lIpaKTH’ECKEX CHCTCMILX. kkCKOpfWIHpOBaH- 
HbIe MOAeJIH MOryT AaTb HeTO¶HbIe KaWCTBeHHbIe pe3yAbTaTbl (HaIIpEMep, 3HaK IlOTOKa a3nyYemK 

MOXSZT OKlt3aTbC.K ~OTSiBOllOlIOXtHblM). 


